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Summary 
The electronic safety systems are systems, the aim of which is to detect threats in the transport process  

– for stationary and moving objects. These systems are increasingly being used in the transport process, 
where they provide safety – to people as well as goods transported in the stationary and moving objects. 
These systems operate in a diverse electromagnetic environment. The paper presents the research results of 
the electromagnetic interference impact on the electronic safety system with a structure of the control panels 
connected in parallel. The interference impact on selected operating parameters was presented for two 
frequency ranges, i.e. ELF (0÷2) kHz and VLF (2÷100) kHz frequency ranges. 
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ODDZIAŁYWANIE ZAKŁÓCEŃ NA ELEKTRONICZNY SYSTEM BEZPIECZEŃSTWA  

O STRUKTURZE RÓWNOLEGŁEJ 
 

Streszczenie 
Elektroniczne systemy bezpieczeństwa są to systemy, których celem jest wykrywanie zagrożeń 

występujących w procesie transportowym - dla obiektów stacjonarnych i ruchomych. Systemy te są coraz 
częściej stosowane w procesie transportowym, gdzie zapewniają bezpieczeństwo – ludziom, przewożonym 
towarom w obiektach stałych oraz ruchomych. Systemy te pracują w zróżnicowanym środowisku 
elektromagnetycznym. W artykule przedstawiono wyniki badań oddziaływania zakłóceń 
elektromagnetycznych na elektroniczny system bezpieczeństwa o strukturze central alarmowych połączonych 
równolegle. Wpływ zakłóceń na wybrane wskaźniki eksploatacyjne przedstawiono dla dwóch zakresów 
częstotliwości, tj. zakres częstotliwości ELF (0÷2) kHz oraz VLF (2÷100) kHz.  

 
Słowa kluczowe: systemy bezpieczeństwa, zakłócenia, struktura równoległa 

 
1. INTRODUCTION 

 
The proper operation of electronic devices or 

equipment fitted with electronic circuits is possible 
by protecting them against the adverse 
electromagnetic fields effects [2].  

The electronic safety systems are systems, the 
aim of which is to detect threats in the transport 
process. Within the vast transport area, the electronic 
safety system of a parallel structure with two 
(uniform) control panels connected with the RS-232 
transmission bus can be used. In Fig. 1, the block 
diagram of the distributed type electronic safety 
system, where two control panels (1, 2) and 
individual modules (of power, extension and 
keypads) were connected with the transmission bus 
with the RS-232C interface, was shown. This system 
has a modular structure with the following 
configuration options:  
• modules allow to extend the system capabilities to 

the maximum number of inputs – 256 detection 
circuits; 

• module can be connected to max. 16 detection 
circuits; 

• 1, 2 and d power modules are used for the entire 
subsystem current gain – their location depends on 
the lengths of the transmission buses between 
individual elements of the system (e.g. the  
d module – current gain for 40 – 45 and 46 – 50 
detection circuits located in the station building); 

• 1 and 2 control panels are connected with the use 
of separate, supervised transmission lines to  
a radio transmitter (alarm notification backup 
source to the alarm receiving centre, e.g. Railroad 
Guards); 

• 1 and 2 control panels supervise two separate, vast 
transport areas of various sizes and traffic 
(buildings and railway platforms) [1,7,9]; 

• 1 and 2 control panels connected with the 
transmission bus exchange internal information of 
the microprocessors supervising the systems, 
operational events, provide controlling the entire 
system from individual control panels (CA1- CA2 
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– control panels do not have a priority) 
[3,5,7,9,15]; 

• control panels operate under the same operating 
conditions (they have the same priorities of 
control, surveillance, power and information 
supplies and operation) [1,11,16]; 

• keypads (w1-w4 and a4-a8) and synoptic tables are 
selected according to the needs of the protected 
transport facility [2,4,6,16]. 

 
All the modules with central processing units  

(1 and 2 control panels) are connected with the RS  
-232C interface with the use of two separate 
transmission buses – Fig. 1. 
 

 
Fig. 1. The block diagram of the distributed electronic safety system with control panels (1,2) and the 

modules connected with the RS-232C interface with the use of transmission buses 
 
2. THE OPERATION AND RELIABILITY 

RESEARCH OF ELECTRONIC SAFETY 
SYSTEMS 

 
In order to determine the selected reliability 

indicators, the operation research of the electronic 
safety system was conducted. The operation and 
reliability [17] research included the electronic 
safety systems consisting of two control panels  
(n = 30 units) and were carried out during the one-
year period (1 year = 8760 hours). At that time, the 
control panels were damaged – m1=3 units. In total, 
m = 2 systems were damaged (within one system, 
two control panels were damaged, and in the second 
case – one control panel). 

In order to estimate the reliability during the 
observation period tB = 8760 hours, the following 
stochastic dependence, suitable for irreparable 
elements, that is operating to the first damage, can 
be assumed: 
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By knowing the Rc1(tB) and Rc2(tB) reliability values, 
the λc1 and λc2 parameters of this distribution can be 
determined [9,12,13]. For the exponential 
distribution (assumption: the electronic safety 
system elements are subject to preliminary ageing in 

the manufacturing plant), the following dependence 
can be used: 
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By knowing the λC1 and λC2 parameter values, it is 
possible to calculate the expected operation time 
value between subsequent damage: 
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In case of the electronic safety system with  
a parallel structure operating without interference 
and the observation time tB = 8760 h, the probability 
of the system's staying in the following states is: 
- in the state of complete usability RO(tB): 

93,0)exp()( 10 =⋅−= BCB ttR λ  
- in the state of impendency over safety QZB1(tB): 
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The reliability of the entire system is: 
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The mean time to repair single damage was 
Tnśr = 20 h. During the annual observation period, 
among n=30 units of the electronic safety systems, 
m=3 damage to the systems were observed. 
Therefore, the average operation time of individual 
systems is: 
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where: n1 – a number of expansion modules, which 
were not damaged during the annual observation 
(n1= n - m = 27), m1 – a number of expansion 
modules, which were damaged during the annual 
observation (m = 3). 
In case of such conducted research and presented 
statistical analysis, the availability coefficient 
(stationary value) is a more meaningful reliability 
indicator: 

The availability coefficient value can be taken as 
the electric safety system stationary reliability 
measure during the annual observation [9,8,10,13]. 
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The availability coefficient value can be taken as the 
electric safety system stationary reliability measure 
during the annual observation [9,8,10,13]. 

3. OPERATING PARAMETERS OF THE 
INTERFERENCE IMPACT ON THE 
ELECTRONIC SAFETY SYSTEM 

 
The electronic safety systems are operated in 

different electromagnetic environment conditions – 
the affecting intended or unintended electromagnetic 
interference, static and mobile [1,3,7,18,19]. For the 
electronic safety system installed within the railway 
area, the probability values of staying in individual 
safety states were presented in Table 1 a, b, c, d. The 
calculation of the probability values of the electronic 
safety system's states corresponds to the interference 
generated within the railway area, i.e. in the 
following order – the electromagnetic field 
background in the station premises (without 
interference), the electromagnetic field background 
on the railway platform, the electromagnetic field 
background in the carriage during its movement,  
a certain level of operation safety of Γ the electric 
safety system (resistance) due to the electromagnetic 
interference [1,7,15,16,20]. The indicator value of γ 
the system total damage – there was accepted a level 
of the impact of the electromagnetic interference 
conducted, induced, and generated during the 
lightning strike impulse of certain parameters  
(Imax = 100 kA, time: pulse leading edges tn=10 μs, 
half-crest-value time on the wave tail tp=350 μs) 
[1,4,6,16].  
 Fig. 2 and 3 show the probability of the electric 
safety system's parallel staying for the selected  
γ interference indicators. 
 

 
Tab. 1. The probability of the electronic safety system's staying in the individual states for the selected  

γ interference indicators 

 

a) the B induction impact of the magnetic field, the ELF frequency range 

γB1 interference 
indicator value γB1=0.44⋅10-6 γB1=1⋅10-3 γB1=1.56⋅10-3 ΓB1=3.66⋅10-3 γB1=1 

R0(t) 0.966243699 0.0001522 0.0000011269 1.16⋅10-14 0 

QZB1(t) 0.0622784 0.001316217 0.0000151599 3.6⋅10-13 0 

QB(t) 0.00126417 0.99853787 0.99998376 0.999999999 1 
 

b) the B induction impact of the magnetic field, the VLF frequency range 

γB2 interference 
indicator value γB2 =2.26⋅10-6 γB2 =2.72⋅10-6 γB2 =45⋅10-6 ΓB2 =342.2⋅10-6 γB2 =1 

R0(t) 0.95096084 0.947136554 0.65397588585 0.04840474 0 

QZB1(t) 0.08598224 0.089373914 0.29890381 0.1455314793 0 

QB(t) 0.0022139244 0.002489059 0.07404858 0.808056872 1 
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c) the E electric field strength impact, the ELF frequency range 

γE1 interference 
indicator value γE1 =7.5⋅10-6 γE1 =175⋅10-6 γE1 =375⋅10-6 ΓE1 =550⋅10-6 γE1=1 

R0(t) 0.908296147 0.20940506 0.03631644 0.0078402481 0 

QZB1(t) 0.112953236 0.32923632636 0.119405655 0.03754805 0 

QB(t) 0.006150841 0.469981124 0.84577328 0.954934536 1 
 

d) the E electric field strength impact, the VLF frequency range 

γE2 
interference 

indicator 
value 

γE2 =1.63⋅10-6 γE2 =20⋅10-6 γE2 =37⋅10-6 ΓE2 =93.4⋅10-6 γE2 =1 

R0(t) 0.95622350835 0.814089637 0.7014506017 0.427984286 0 

QZB1(t) 0.0812902693 0.19749546 0.27246392 0.3733093 0 

QB(t) 0.0018599169 0.02193605 0.05496858 0.2163291624 1 
 

 

 

 
 
Fig. 2. The electronic safety system's staying in the 
individual safety states for the entire frequency range, the 
system used in the railway station premises with a certain 
level of the electromagnetic field background, a) the state 
of the system's complete usability R0(t), b) the state of 
impendency over safety QZB1(tB), c) the state of 
unreliability of safety QB(tB), marked in Figures:  
• R0, QZB1, QB – state probability values of the system 

operating without interference, interference indicator  
γ = 0; 

• R0B1, QZ1B1, QBB1 – state probability values of the system 
operating with interference (the B induction of the 
magnetic field, the ELF frequency range); 

• R0B2, QZ1B2, QBB2 – state probability values of the system 
operating with interference (the B induction of the 
magnetic field, the VLF frequency range); 

• R0E1, QZ1E1, QBE1 – state probability values of the system 
operating with interference (the E electric field strength, 
the ELF frequency range); 

• R0E2, QZ1E2, QBE2 – state probability values of the system 
operating with interference (the E electric field strength, 
the VLF frequency range). 

 

 

 
 
Fig. 3. The electronic safety system's staying in the 
individual safety states for the frequency range (the system 
installed within the railway area), a) the state of the 
system's complete usability R0(t), b) the state of 
impendency over safety QZB1(tB), c) the state of 
unreliability of safety QB(tB), marked in Figures: 
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• R0, QZB1, QB – state probability values of the system 
operating without interference, interference indicator  
γ = 0; 
• R0B1, QZ1B1, QBB1 – states probability values of the 
system operating with interference (the B induction of the 
magnetic field, the ELF frequency range); 
• R0B2, QZ1B2, QBB2 – state probability values of the system 
operating with interference (the B induction of the 
magnetic field, the VLF frequency range); 
• R0E1, QZ1E1, QBE1 – state probability values of the system 
operating with interference (the E electric field strength, 
the ELF frequency range); 
• R0E2, QZ1E2, QBE2 – state probability values of the system 
operating with interference (the E electric field strength, 
the VLF frequency range). 
 
4. COMPARISON OF OPERATING 

PARAMETERS OF THE ELECTRONIC 
SAFETY SYSTEMS WITH DIFFERENT 
RELIABILITY STRUCTURES 

In Table 2, the research results of the examined 
electronic safety systems with different reliability 
structures were presented.  

Two different types of the electromagnetic 
environment were included – the electronic safety 
system operated: without interference – γ = 0 and 
with interference (installed within the railway area - 
γ ≠ 0 [1,4,7,16].  

The impact of electromagnetic interference on 
the electronic safety system results in changes of the 
probability values of the state of complete usability 
R0(tb) – Fig. 4.  

The increase of the interference level results in 
the fact that the parameter value R0(tb) for the 
parallel structure decreases linearly, reaching a value 
of zero for the indicator γ = 1. 
 

 
Table 2. The probability of the electronic safety system's staying in the states: RO, QZB1, QB 

Type of the electronic safety system 

The serial-parallel 
reliability structure  

The parallel reliability 
structure 

Indicator  
name 

 
 

System operating 
without interference  

γ = 0 

System operating 
within the railway 

area γ ≠ 0 

System operating 
without interference 

γ = 0 

System operating 
within the railway 

area γ ≠ 0 

RO 0.68 0.6667 0.9 0.882357 
QZB1 0.127556 0.140886 0.0947435 0.113474 

a) 

QB 0.192444 0.193041 0.002565 0.004168 
RO 0.68 0.458469 0.9 0.606797 

QZB1 0.127556 0.349087 0.0947435 0.311476 
b) 

QB 0.192444 0.24693 0.002565 0.081726 
a) The electronic safety system installed in the usable room of the railway station – the electromagnetic field background – 

the B induction impact of the magnetic field in the VLF frequency range γ = 2.26⋅10-6; 
b) The electronic safety system installed in the carriage – the electromagnetic field measurement during the train 

movement – the B induction impact of the magnetic field in the VLF frequency range γ = 45⋅10-6. 
 

Within the electric safety system serial-parallel 
reliability structure, the increase in the interference 
value γ = 93⋅10-6 does not result in changes R0(tb) 
(system more resistant to interference). Above this 
value (γ = 93⋅10-6), the R0(tb) value decrease 
occurred.  

 
 
Fig. 4. The change of the probability values of the 
electronic safety system's operating states: the state of 
complete usability R0(tb), the state of impendency over 
safety QZB1(tb) and the state of unreliability of safety 
QB(tb) for the system with a parallel structure (the B 
induction impact of the magnetic field – the VLF 
frequency range).  

Figure 5 presents the progression of the 
probability function of the system's staying in the 
R0(tb), QZB1(tB) and QB(tB) states depending on the  
γ interference indicator in case of the system with a 
parallel structure for a different number of the 
damaged control panels of the "i" installed in 
sequence (vector 2 1 – damage to one control panel, 
vector 3 2 – damage to two control panels, vector 4 
3 – damage to three control panels). In case of small 
values of the γ interference indicator, the probability 
value of the system's staying in the state of complete 
usability is at a constant level, which has the R0(tb) 
value in the following case γ = 0. Within the range 
of values γ = (10 ÷ 500)⋅10-6, a rapid, linear decrease 
in the R0(tb) value occurs. In case of this range,  
γ there is an increase of the QB(tB) value to the 
maximum value of one (the electronic safety system 
changes into the state of unfitness). The function 
progression of the state of impendency over safety 
QZB1(tB) reaches the maximum value of γ = 100⋅10-6, 
and then it gradually decreases obtaining a value of 
zero for great values γ > 800⋅10-6 – Fig. 6. 
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Fig. 5. The probability function progression of the 
system's staying in the R0(tb), QZB1(tB) and QB(tB) states 
depending on the γ interference indicator in case of the 
system with a parallel structure, for a different number of 
the damaged control panels.  
 

 
 
Fig. 6. The probability function progression of the 
electronic safety system's staying in the following states: 
− R0(tb)Z, QZB1(tB)Z, QB(tB)Z – the system installed within 

the railway platform area; 
− R0(tb)Z5x5, QZB1(tB)Z5x5, QB(tB)Z5x5 – the system installed 

in the railway station building, which has a lightning rod 
of the 5x5 m "eye" dimensions. 

 
5. SUMMARY AND CONCLUSIONS 
 

The electronic safety systems installed in the 
railway station buildings due to the existing 
lightning rods as well as reinforced ceilings and wall 
barriers are characterised by greater resistance to 
electromagnetic interference (shielding impact of the 
construction works on spreading the interference 
within the railway area) [1]. In case of the systems 
with a parallel structure, the γ interference value 
indicator, for which the electronic safety system 
reaches the state of unfitness, is accordingly 
increased. The R0(tb)Z parameter decreases for γ < 
10⋅10-6 in case of the electronic safety system 
installed within the railway platform. However, for 
the electronic safety system installed in the railway 

buildings, R0(tb)Z decreases for the parameter  
γ above the value γ = 10⋅10-6. The system changes 
into the state of unfitness respectively for γ>500⋅10-6 
(railway platform area) and for γ ≈ 1, i.e. the system 
(or the system's component), which is used in the 
railway station buildings. While designing the 
electronic safety system, which will be applied in  
a vast railway area, it is important to take into 
consideration the place of installing the individual 
system components (devices). The first step that 
should be completed before the system installation is 
to determine the natural, distorted electromagnetic 
environment in the railway area [1,6,14,20]. All the 
devices, electrical and electronic systems, which are 
used within the-above mentioned area, should 
operate with the maximum permitted power. Within 
the areas, where a large distortion of the 
electromagnetic environment occurs, it is crucial to 
apply the electronic safety system devices, which are 
less susceptible to interference, or other measures of 
the compatibility pyramid (e.g. shielding, signal 
filtering, distribution, etc.). 
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